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Zolotarev Bandpass Filters
H. Clark Bell, Fellow, IEEE

Abstract—Zolotarev rational functions may be used in certain
bandpass filter applications for which two narrower passbands
are required. Coupled-resonator low-pass prototypes for narrow
bandpass filters based on even- and odd-degree Zolotarev func-
tions are synthesized using a transformed variable. Compared to
other filters, those with Zolotarev responses have sharper skirt
selectivity, resulting in lower passband distortion.

Index Terms—Bandpass filters, Chebyshev filters, circuit syn-
thesis, elliptic filters, passive filters, resonator filters.

I. INTRODUCTION

A DOUBLE-PASSBAND RF or microwave filter require-
ment is usually satisfied with two bandpass filters,

diplexed at both ends. In instances where rejection between the
passbands is not required, a more efficient use of resonators and
a simpler structure may be obtained with a single coupled-res-
onator filter based on a Zolotarev low-pass prototype of either
even or odd degree. The conventional ChebyshevLC low-pass
filter has an equiripple passband, in the normalized frequency
domain, defined by . The Zolotarev low-pass filter
is similar, except that the equiripple passband is defined by

, as for a conventionalLC bandpass filter.
Even and odd-degree Zolotarev low-pass filter responses are
illustrated in Fig. 1, for degree six and seven filters with 26-dB
minimum return loss and .

Zolotarev rational function approximations for even-de-
gree low-pass filters were introduced by Szentirmai [1] and
Matthaei [2] and for odd-degree low-pass filters by Levy [3];
Horton extended the odd-degree Zolotarev approximation to
responses with finite-frequency transmission zeros (loss poles)
[4]. Even-degree approximation was achieved by mapping a
Chebyshev response, while odd-degree Zolotarev approxi-
mation required specialized computational techniques using
Jacobi’s eta function. The even-degree Zolotarev low-pass
filter has a mismatch at zero frequency and is realizable as
an impedance-transformingLC ladder network with unequal
terminations. The odd-degree Zolotarev low-pass filter has a
single reflection zero (loss zero) at zero frequency and a large
ripple between zero frequency and the lower passband corner
and is realizable inLC ladder form with equal terminations.

In this paper, classical Chebyshev rational function ap-
proximation in a transformed variable is extended to include
Zolotarev responses, thus simplifying the design procedure.
The resulting amplitude response can be easily converted to that
of a narrow bandpass filter and used to realize a coupled-res-
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Fig. 1. Zolotarev low-pass responses. (a) Degree six. (b) Degree seven.

onator low-pass prototype network. Comparisons with other
types of filter responses demonstrate that, for double passband
requirements and a fixed number of resonators, the Zolotarev
filter response has greater stopband skirt selectivity. The
improved selectivity may be used to achieve lower passband
signal distortion (less variation of loss and delay) in critical
applications.

II. TRANSFORMEDVARIABLE SYNTHESIS

The conventionalLC bandpass transformed frequency vari-
able is given by [5]

(1)

which maps the filter passband onto the entire imaginaryaxis
and the upper stopband ( ) into and the lower
stopband ( ) into on the positive axis. For

, use of (1) results in a low-pass response. The Zolotarev
response, having nonzero, has no lower stopband (except inci-
dentally resulting from the large ripple below the passband) and
will still be considered a low-pass response, later to be trans-
formed into a bandpass response with a double passband.

The starting point for the approximation step of synthesis is
formation of the polynomial

(2)
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where is the filter degree, the are the loss poles transformed
by (1) and and are even polynomials in. Finite nonzero
loss poles transform to identical pairs on the realaxis (for each
real or imaginary -plane pair), or to two positive-real conjugate
pairs (for each complex-plane quadruplet). As a result,
is strictly Hurwitz, and the roots of and are interlaced
along the imaginary axis (the filter passband). For stopband
(positive axis) loss estimates, a further frequency transforma-
tion may be made to , and .

Although “Chebyshev” or “Zolotarev” typically refer to fil-
ters having all loss poles at infinite frequency, in this paper they
will refer to rational function filter responses having arbitrary
distributions of loss poles, and the names will distinguish the
passband behaviors.

A. Even-Degree Approximation

An even-degree Zolotarev-passband response can be obtained
by a straightforward bilinear mapping of a Chebyshev-passband
response, where the lower passband corner at is mapped
to , and the upper passband corner at , and

, are mapped to their same values [1]–[3] as follows:

(3)

The reverse mapping

(4)

is useful in mapping a stopband corner frequency for use in a
degree equation relating the filter selectivity to the degree, the
minimum passband return loss, and the minimum stopband loss
[6].

The same results can also be obtained with the transformed
variable using (1), (2), and the classical Chebyshev rational
function [5]

(5)

The characteristic function is , where
and are the reflection and transmission coefficients, re-
spectively, and is the minimum passband return loss. The
rational function (5) may be used for any general distribution
of loss poles; the frequency transformation (1) guarantees that

oscillates between zero and with the maximum pos-
sible number of ripples and is, therefore, a Chebyshev (optimum
equiripple) rational function.

Further examination of the Chebyshev rational function will
be helpful in subsequently deriving an odd-degree Zolotarev ra-
tional function in a transformed variable. The oscillating pass-
band behavior of is also observable by expanding (5) into

(6)

which, on the imaginary axis (the filter passband), is

(7)

As increases along the entire imaginaryaxis (the filter
passband), each of the angles increases from
to ; the limits of are, therefore, and , and

at different passband frequencies.
In the stopband of the filter, where , the loss in

decibels may be estimated using (6), with the additional trans-
formation , by [5]

(8)

with negligible error for values of and which are greater
than 15 dB each. Equation (8) is used to approximate a stopband
specification by iteratively adjusting the loss poles.

B. Odd-Degree Approximation

The method used to form the Chebyshev rational function (5)
does not apply to an odd-degree Zolotarev rational function be-
cause a loss zero is required at ( ), which is
outside the passband. However, the approximating function can
be formed as the product of two rational functions: one which
is equiripple in the passband with loss zeros, and another
which is nearly constant across the passband and contains the
loss zero at . This procedure is similar to that for the
doubly-terminated asymmetric parametricLC bandpass filter
[5]; the Zolotarev rational function filter is treated as an asym-
metric parametric bandpass filter with no loss poles below the
passband and with the real-axis loss zero fixed (rather than a free
parameter) at zero frequency. The odd-degree filter must have
an odd number of loss poles at ( ).

Consider the following product of two rational functions:

(9)

is an even rational function which has no zeros or poles
on (the filter passband), and the positive constant
corresponds to a hypothetical (nonphysical) loss pole at
[5]. On , with increasing , decreasesfrom

to with the result that the limits of are
and , and at the required

different passband frequencies.
Analytic continuation of the equiripple rational function

in (9) yields

(10)
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The polynomial ,
which has conjugate pairs of imaginary (passband)
roots, must also have a pair of real roots in a factor

. The square of that factor, as well as the divisor ,
which contains the hypothetical loss pole, are to be cancelled by

; hence,

(11)

Choosing , and at the passband
edges ( and ).

After canceling common factors in the two rational functions,
the resulting Zolotarev rational function is

(12)

The one positive root of at is factored
out to form the polynomial , whose remaining roots are
in (the passband). The positive constantis calculated
by [5]

(13)

Equation (13) is solved iteratively, starting with until
no longer changes value. Note that because

the factors are negative and is odd.
The rational function solution (12) is not exactly equiripple;

determines how much will depart from an
equiripple passband response. Examining (11), the extremum
of inside the passband is at

(14)

Ordinarily will be nearly unity. The deviation from a true
equiripple response will be maximum in the vicinity of

, but for practical cases the deviation is imperceptible in
the loss responses. For example, in the degree seven Zolotarev
response of Fig. 1(b), the deviation from equiripple is less than
10 dB in the return loss, which is computationally negligible.

In estimating the odd-degree stopband loss, the contribution
of the loss zero at is taken into account in (8) by
including the negative term

(15)

C. Realization

Following either filter approximation step above, the realiza-
tion step of synthesis may be performed to obtain a low-passLC
ladder [5] or other appropriate structure.

For bandpass applications, either the even- or odd-degree
Zolotarev response can be remapped to a narrow-bandpass
response and realized as a coupled-resonator prototype [7]

(a)

(b)

Fig. 2. Normalized coupled-resonator low-pass prototypes. (a) All-pole.
(b) General stopband, even degree.

for the design of a filters using a wide variety of practical
structures [8], [9]. As in the Chebyshev case, a Zolotarev cou-
pled-resonator filter of even or odd degree can be structurally
symmetric with equal terminations.

III. COUPLED RESONATORPROTOTYPES

Following are comparisons of lossless Chebyshev and
Zolotarev narrow-bandpass prototype filters of degree six and
seven. The normalized coupled-resonator low-pass prototypes
for these examples are shown in Fig. 2. The filter whose
low-pass prototype has all of its loss poles at infinite frequency,
commonly referred to as an “all-pole” filter, has a prototype
network as shown in Fig. 2(a). The more general filter of even
degree with loss poles at finite frequencies can be realized in
the form shown in Fig. 2(b). The filter terminations andres-
onators are represented by unit-valued resistors and capacitors,
respectively, and ideal admittance inverters of characteristic
admittance represent the couplings. The filters are
structurally symmetric, so that , etc.

A. Degree Six, All-Pole Filters

For a six-resonator narrow-bandpass Chebyshev filter (i.e., an
all-pole Chebyshev-passband filter) centered at 1000 MHz, with
an 80-MHz-wide equripple passband and 26-dB maximum re-
turn loss, theoretical reflection and transmission responses are
shown in Fig. 3(a). The couplings in the prototype network,
shown in Fig. 2(a), which may be calculated from standard for-
mulas, are

Responses for a six-resonator all-pole Zolotarev-passband
filter with the equiripple passbands only in the outer 10-MHz
segments of the 80-MHz band (corresponding to in
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(a)

(b)

Fig. 3. All-pole,n = 6 responses. (a) Chebyshev passband. (b) Zolotarev
passband.

the normalized low-pass prototype) are shown in Fig. 3(b). The
corresponding couplings are

Although the Chebyshev filter may be adequate for a typical
bandpass filter requirement, it is inefficient when only the outer
10 MHz at each end of the 80-MHz band is actually needed to
pass signals, and the Zolotarev filter shows higher stopband re-
jection. The even-degree Zolotarev filter also provides a small
amount of rejection at the center frequency, which could be
useful in some applications.

Fig. 4(a) shows a normalized prototype network for a
commensurate-line high-pass filter based on the six-resonator
Zolotarev-passband coupled-resonator prototype above. The
commensurate frequency is 1000 MHz, and Fig. 4(b) shows the
theoretical responses. This prototype is in a form which can be
used to realize a TEM interdigital bandpass filter.

B. Degree Seven, All-Pole Filters

Seven-resonator all-pole Chebyshev-passband filter re-
sponses for the same center frequency and equiripple band-
width are shown in Fig. 5(a), with couplings given by

Seven-resonator all-pole Zolotarev-passband responses,
equiripple only over the outer 10-MHz segments, are shown in
Fig. 5(b). The coupling elements are

Again the Zolotarev filter shows higher stopband rejection
than the Chebyshev filter. In the odd-degree Zolotarev filter, a

(a)

(b)

Fig. 4. Commensurate-line Zolotarev filter,n = 6. (a) Normalized prototype.
(b) Responses.

(a)

(b)

Fig. 5. All-pole,n = 7 responses. (a) Chebyshev passband. (b) Zolotarev
passband.

narrow passband occurs at center frequency, which could be of
use if, for example, a pilot tone must be passed by the filter.

C. Degree Six, Equal-Minima-Stopband Filters

Theoretical reflection and transmission responses of a
six-resonator narrow-bandpass elliptic-function filter (i.e., an
equal-minima- stopband, Chebyshev-passband filter) centered
at 1000 MHz, with a 40-MHz-wide equripple passband, 26-dB
maximum return loss, and 60-dB minimum stopband loss, are
shown in Fig. 6(a). The couplings in the prototype network,
Fig. 2(b), are
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(a)

(b)

Fig. 6. Equal-minima stopband (elliptic-function),n = 6 responses.
(a) Chebyshev passband. (b) Zolotarev passband.

Responses for a six-resonator equal-minima-stopband,
Zolotarev-passband filter with the equiripple passbands only
in the outer 5-MHz segments of the 40-MHz band (also corre-
sponding to in the normalized low-pass prototype)
are shown in Fig. 6(b). The corresponding couplings are

As expected, the Zolotarev-passband filter has steeper skirt
rejection than the Chebyshev-passband filter; the 60-dB band-
widths are 56.2 and 71.8 MHz, respectively.

IV. DELAY PERFORMANCE

With stopband loss and passband return-loss specifications
that include margins, additional performance margin is usually
put into widening the passband in order to reduce signal distor-
tion. Passband delay is very useful in comparing narrow-band-
pass coupled-resonator filter designs, since it not only indicates
signal distortion resulting from delay variation (dispersion), but
also from loss and loss variation (dissipation loss is, to a very
good approximation, proportional to delay). Following are theo-
retical comparisons of six-resonator configurations with double-
passband requirements.

A. Six-Resonator, All-Pole Filters

Let the return loss be specified as 26 dB minimum over the
10-MHz passbands in the previous all-pole examples (960–970
and 1030–1040 MHz), and the stopband loss be specified as
35 dB minimum at 920 and 1080 MHz. Filters with six res-
onators will be compared: Chebyshev, Zolotarev, and double-
diplexed three-resonator equal-bandwidth filters.

Fig. 7. Loss and delay of all-polen = 6 filters.

The wide-band loss and upper-passband delay responses
of the three filters are shown in Fig. 7, with the 35-dB losses
converging at 920 and 1080 MHz. The Chebyshev filter has
an equiripple bandwidth of 82.2 MHz. The Zolotarev filter’s
inner passband edges were fixed at 970 and 1030 MHz, and
the outer passband edges are 951.5 and 1048.5 MHz. The
double-diplexed filters’ center frequencies were fixed at 965
and 1035 MHz and the bandwidth of each filter is 13.3 MHz.
The maximum and minimum delay and difference (variation)
across the 10-MHz-wide passbands are summarized as follows:

Diplexed 29.75 ns max., 27.38 ns min., 2.36 ns diff.

Chebyshev 23.23 ns max., 17.78 ns min., 5.45 ns diff.

Zolotarev 21.48 ns max., 19.75 ns min., 1.74 ns diff.

The Zolotarev-passband filter, with the lowest maximum delay
and the lowest delay variation, makes the most efficient use of
the six resonators in terms of passband signal distortion.

B. Six-Resonator, Equal-Minima-Stopband Filters

Let the return loss be specified as 26 dB minimum over the
5-MHz passbands in the previous equal-minima-stopband ex-
amples (980–985 and 1015–1020 MHz), and the stopband loss
be specified as 60 dB minimum at 963 and 1037 MHz. Six-res-
onator Chebyshev- and Zolotarev-passband filters will be com-
pared. The use of double-diplexed elliptic-function filters is less
straightforward and is not considered here; the two paths from
input to output may result in up to 6-dB reduction in stopband
loss, requiring a corresponding increase in the minimum stop-
band loss of each filter.

The wide-band loss and upper-passband delay responses
of the two filters are shown in Fig. 8, with the 60-dB losses
converging at 963 and 1037 MHz. The Chebyshev-pass-
band filter has an equiripple bandwidth of 41.25 MHz. The
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Fig. 8. Loss and delay of equal-minima-stopband,n = 6 filters.

Zolotarev-passband filter’s inner passband edges were fixed at
985 and 1015 MHz, and the outer passband edges are 975.9 and
1024.1 MHz. The delay characteristics across the 5-MHz-wide
passbands are summarized as follows:

Chebyshev 51.68 ns max., 34.37 ns min., 17.31 ns diff.

Zolotarev 43.21ns max., 34.93 ns min., 8.29 ns diff.

Again, the Zolotarev-passband filter exhibits less passband
signal distortion.

V. CONCLUSION

In the examples presented, the location of the loss poles were
determined by the type of response (all-pole or equal-minima
stopband) in the normalized frequency domain. Using ra-
tional approximation in a transformed frequency variable,
the low-pass filter synthesis may include loss poles placed
at arbitrary finite stopband frequencies for specific rejection
requirements, or placed on the real-plane axis or at complex
-plane frequencies for delay equalization, or both.
In instances where rejection between the passbands is re-

quired, but rejection below the lower passband and above the

upper passband is not required, high-pass Zolotarev responses
may be mapped to a narrow-bandstop response [10].

Realizations inLC low-pass ladder form can be transformed
into LC high-pass, bandpass, or bandstop ladder networks using
reactance transformations appropriate for each case, resulting in
exact realizations. Zolotarev realizations may also be obtained
for commensurate-line networks by including the unit element
in the synthesis.
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